2x^2+0=225

Simple and best practice solution for 2x^2+0=225 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+0=225 equation:



2x^2+0=225
We move all terms to the left:
2x^2+0-(225)=0
We add all the numbers together, and all the variables
2x^2-225=0
a = 2; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·2·(-225)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*2}=\frac{0-30\sqrt{2}}{4} =-\frac{30\sqrt{2}}{4} =-\frac{15\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*2}=\frac{0+30\sqrt{2}}{4} =\frac{30\sqrt{2}}{4} =\frac{15\sqrt{2}}{2} $

See similar equations:

| a+22=39 | | 5(4x+3)^2+3=83 | | 54=9w​ | | 5n=5^(11*5^(3)) | | 35+x+4x=90 | | 12x/6=21 | | -12=1.8x+32 | | 3x^2=8+10x | | 4p÷8+12=14 | | 35=45–n;10,11,12 | | x12+3=5 | | 2((x+6.1)=3.4 | | 4(x+15)=14 | | 6(x=11)=42 | | 64=-16^2+48x+6 | | 6x–3=75 | | 6x–3=75 | | 2a−2=4a | | 5b=10² | | x/4+1=6.5 | | 4(x-15)=3 | | 12x/84=15/20 | | 4+y=29y= | | 5x–2=28. | | 6(n-1)=4(6+n) | | b^2=51 | | x+7/20=12/15 | | 3(r+5)=5r+1 | | x/2=1/8+1/4 | | x+7/12=15/20 | | 1-1/2+x=3/4+1/2 | | 1-1/2+x=3/4+1/2 |

Equations solver categories